Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis.

نویسنده

  • W D Grant
چکیده

Although exponential growth of Bacillus subtilis 168 in a phosphate-limited medium halted with the exhaustion of inorganic phosphate, the bacteria continued to grow at a slower rate for a further 3 to 4 h at 37 degrees C. This postexponential growth in the absence of an exogenous phosphate supply was accompanied by a loss of teichoic acid from the cell walls of the bacteria. Quantitative analysis of walls and culture fluids showed that the phosphate loss from the walls could not be accounted for by an increase in phosphate-containing compounds in the medium, which implied that the cells were using their own wall teichoic acids to supply phosphate necessary for growth. Addition of exogenous teichoic acid to phosphate-starved cultures resulted in stimulation of growth and in the simultaneous disappearance of teichoic acid phosphate from the medium. It is proposed that teichoic acids, which can contain more than 30% of the total phosphorus of exponential-phase cells, can be used as a reserve phosphate source when the bacteria are starved for inorganic phosphate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid.

Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essentia...

متن کامل

Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P.

The tagAB and tagDEF operons, which are adjacent and divergently transcribed, encode genes responsible for cell wall teichoic acid synthesis in Bacillus subtilis. The Bacillus data presented here suggest that PhoP and PhoR are required for direct repression of transcription of the two operons under phosphate starvation conditions but have no regulatory role under phosphate-replete conditions. T...

متن کامل

Ratio of teichoic acid and peptidoglycan in cell walls of Bacillus subtilis following spire germination and during vegetative growth.

Cell walls were isolated from cells of Bacillus subtilis strain Marburg during synchronous outgrowth of spores, during the two synchronous cell divisions which followed, and at various times during exponential and early stationary growth. The amounts of teichoic acid and peptidoglycan components were determined in each cell wall preparation. The peptidoglycan is composed of hexosamine, alanine,...

متن کامل

Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase.

The Bacillus subtilis thermosensitive mutant ts-21 bears two C-G-->T-A transitions in the mnaA gene. At the nonpermissive temperature it is characterized by coccoid cell morphology and reduced cell wall phosphate content. MnaA converts UDP-N-acetylglucosamine into UDP-N-acetylmannosamine, a precursor of the teichoic acid linkage unit.

متن کامل

The Amino terminus of Bacillus subtilis TagB possesses separable localization and functional properties.

The function(s) of gram-positive wall teichoic acid is emerging with recent findings that it is an important virulence factor in the pathogen Staphylococcus aureus and that it is crucial to proper rod-shaped cell morphology of Bacillus subtilis. Despite its importance, our understanding of teichoic acid biosynthesis remains incomplete. The TagB protein has been implicated in the priming step of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 137 1  شماره 

صفحات  -

تاریخ انتشار 1979